04

FOR SUPERIOR EFFICIENCY IN SMALL SPACES

Raypak MVB – Modulating Vertical Burner – is a vertically fired, full modulation capable gas water heater designed for both hydronic heating and domestic hot water applications, and can even do both simultaneously.

EFFICIENCY

Up to 88.4%¹ thermal efficiency in a non-condensing platform provides good practical efficiency in high temperature circuits. Incorporates unique integral evaporator system which collects and re-evaporates condensate which may form under certain conditions, eliminating the need for a boiler condensate drain. Can operate as low as 49°C without additional bypasses.

SMALL FOOTPRINT

With less than 2.4m² of installed space per heater fitting into tight spaces is a breeze. Fits through a standard 800mm doorway for replacement ease.

FLEXIBLE FLUEING

A variety of small diameter flueing options including traditional vertical flueing, horizontal, room sealed and outdoor with exceptional flue run lengths provide installation flexibility. Flue versatility is further enhanced by the self-tuning combustion system which compensates for unusual flue configurations.

¹ Part load. 86.2% full load.

CONTROL INTERFACE WITH BMS

7" colour touchscreen user interface provides instant visual information. The modulating VERSA IC Controller merges safety, ignition and temperature control, outdoor reset and freeze protection, plus system monitoring, alarm and diagnostics with VFC remote alarm, and BMS transmission all in one Integrated Control Platform.

The MVB is factory configured for Modbus RTU BMS communication (with extension capability). Supplied BMS gateways include:

- Modbus communication port Standard
- BACnet MS/TP, BACnet IP, N2 Metasys or Modbus TCP, LONWorks - Optional

ADDITIONAL FEATURES AND BENEFITS

MASTER

CONTROL

 Air: Gas ratio burner control can provide up to 7:1 turndown on each heater (14% minimum fire rate) and up to 4 heaters can be internally cascade connected, with equal runtime auto rotation, to provide up to 28:1 system turndown (3.5% minimum fire rate) for optimum temperature control in hydronic circuits

FOLLOWERS

- MVB automatically self-tunes to accommodate the widest range of gas supply pressures. The high quality integrated blower-gas valve is self-correcting and allows smooth operation with fluctuating gas supply pressures
- Can operate up to 3,000m altitude (De-rate after 1,500m)

- 0-10V DC BMS Interface (control setpoint or direct drive unit on/off)
- Built-in outdoor reset functionality for hydronic heating
- Can simultaneously operate building pump (hydronic circuits), water heater primary pump and DHW pump in hybrid Heating/DHW circuits

COMMERCIAL TO THE CORE

- Quality components including Ebm and Amatek fan, Dungs gas valve, bronze headers and copper finned tube, structural steel base, stainless steel combustion chamber, heavy gauge galvanized steel cabinet with UV-resistant Polytuf powder coat finish passes >1000 hour salt spray test
- 7 models in the range from 527MJ/h to 1990MJ/h (126kW to 476kW)

CASE STUDIES

DEL SOL MEDICAL CENTRE EL PASO, TEXAS, USA

Del Sol Medical Center, El Paso Texas, installed 12 x MVB H7-2003 (912000NH) water heaters indoor in December of 2011 to provide central heating.

DISTRICT HEATING CHINA

6 x MVB H7-4003 (4000MJ/hr) water heaters each (12 total) are being used to provide district heating to two separate districts in China.

NEKTAR BUILDING OAKLAND, CALIFORNIA, USA

The Nektar Building in Oakland, California installed 2 x MVB H7-4003 (4000MJ/hr) water heaters as an efficiency upgrade and to meet the new emissions requirements in the bay area in 2013 to provide central heating.

APPLICATIONS

HYDRONIC HEATING APPLICATION

MVB ('H' models) are ideal for hydronic heating due to the air:gas ratio control and up to 28:1 turndown (in cascade).

- Primary circuit and, optionally, building pump can be controlled
- Outdoor reset for optional temperature control is available
- Cascade up to 4 units for better control and improved lifetime

HYDRONIC HEATING AND DOMESTIC HOT WATER APPLICATION

Building heating and potable domestic hot water can be achieved as a combined system by using the MVB with Crossflow or a hot water calorifier.

- Connect Crossflow primary flow and return to the building flow and return
- Storage may or may not be required depending on the amount of available energy

LEGEND	Ā	STOP VALVE	⊠ ∿	PRESSURE LIMITING VALVE	⊳	GATE OR BALL VALVE	Ŵ	UNION		DIRECTION OF FLOW
		NON RETURN VALVE	~~ ∕₹–	EXPANSION CONTROL VALVE	¢	CIRCULATOR	Y	TUNDISH	Х	MAXIMUM DISTANCE NOT TO EXCEED 4X PIPE DIAMETER OR 300mm, WHICHEVER IS LESS

DOMESTIC HOT WATER APPLICATION

MVB is WaterMark certified for use in DHW applications.

- 'W' models suitable for up to 71°C
- 'H' models suitable for higher temperatures
- Cascading and rotating options for improved lifetime

66

TECHNICAL DATA

MODELS			910500	910750	911000	911250	911500	911750	912000	
Natural & Propane	Input Output	MJ/h kW	527 126	791 189	1054 252	1319 316	1582 379	1846 442	1990 476	
Dimensions										
В		mm	1092	1245	1397	1549	1702	1905	2057	
D		mm	813	965	1118	1270	1422	1575	1727	
E		mm	889	1041	1194	1346	1499	1651	1803	
F		mm	603	756	908	1060	1213	1365	1518	
G^1			R1	R1	R1¼	R1¼	R1¼	R2	R2	
H1			R2	R2	R21/2	R2½	R2½	R2½	R21/2	
К		mm		150			20	00		
L		mm		924			95	54		
М		mm		368			45	51		
Ν		mm		150			20	00		
Р		mm	889	1041	1232	1346	1499	1727	1880	
R		mm	152	152	152	152	152	229	229	
V		mm	51	51	51	51	51	127	127	
Weight		kg	272	299	326	354	381	426	454	
Relief Valve Connection			RC3⁄4	RC¾	RC¾	RC¾	RC¾	RC3⁄4	RC3⁄4	
Indoor Sound Pressure at 3m		dBA	63	63	63	63	63	69	69	
Outdoor Sound Pressure at 3m		dBA	55	55	55	55	55	62	62	
Electrical Rating 240V 50Hz		Amps ²	6.25	6.25	6.25	6.25	6.25	8.5	8.5	
Min Buffer Tank Capacity		L	217	326	434	544	653	761	820	
Max Storage Tank Capacity		L	6511	9767	13022	16329	19585	22840	24597	
	30	°C rise	3617	5426	7234	9072	10880	12689	13665	
	40	°C rise	2713	4069	5426	6804	8160	9517	10249	
	50	°C rise	21/0	3256	4341	5443	6528	/613	6922	
Litres Recovery	65	°C rise	1669	2713	3330	4000 4187	5440 5022	5856	6307	
Per Hour @ (Nat/Prop)	70	°C rise	1550	2325	3100	3888	4663	5438	5856	
	75	°C rise	1447	2170	2894	3629	4352	5076	5466	
	80	°C rise	1356	2035	2713	3402	4080	4758	5124	
	85	°C rise	1277	1915	2553	3202	3840	4478	4823	
Flow Rate and Pressure Drop										
	10	L/s	3.13	4.62	6.18	7.23	-	-	-	
	10	dP (kPa)	11.05	25.15	44	56.7	-	-	-	
T	15	L/s	2	3	4	5	6	7	-	
Temperature Rise (10)	15	dP (kPa)	5	10.8	21.1	35.6	56.3	82.9	-	
		L/s	-	2.26	3	3.77	4.5	5.28	5.7	
	20	dP (kPa)	-	7.1	12.7	25.8	33.8	44.7	60.4	
		L/s	1.6	2.11	2.88	3.58	4.29	4.99	5.7	
Min Flow		dP (kPa)	3.35	5.79	11.58	19.81	30.48	42.67	60.35	
		dT Deg C	19.4	21.7	21.7	21.7	21.7	21.7	21.7	
		L/s	6.4	6.4	7.23	7.23	7.23	7.23	7.42	
Max Flow		dP (kPa)	34.44	42.06	56.69	67.67	77.72	82.91	97.54	
		dT Deg C	5	7.2	8.3	10.6	12.8	15	16.7	

¹ Water and gas connections on the MVB are NPT threaded and will not seal against ISO 7 (BSP) threads. The NPT/BSP adaptors supplied must be fitted in order to make further connections to the system. ² Excluding pumps.

MVB MODEL NUMBE

MVD MODEL NUMBERS								
91	0500	0500 B		N/P	V	N/H	K	
Commercial MVB	Approx. Thermal input (MJ/h)	Hea Mate B = Bi	der erial ronze	Gas Type N = Nat gas P = Propane	Heater Configuration H = Hydronic W = Domestic Hot Water		K = Installation Kit	
GAS SUPPL	Y PRESSUR	E	THERMOS	THERMOSTAT SETTINGS				
Gas Type	Natur	latural		Propane		W Model	H Model	
Minimum at Fi	ull 1.13	3		1.13	Max	71°C	82°C	
Load (kPa)				1110	Factory Set	51.5°C	Mode setting	
Maximum (kP	a) 2.6			3.2	Min	10°C	10°C	
					n/1111	10 0	10.0	

³ Do not install on carpeting. NOTE: Local codes may require increased clearances.

Front View

TABLE OF CONTENTS

VERSATILE APPLICATIONS FOR FLUEING

FLUEING

The MVB is a high efficiency, fan forced water heater. The flue must be of minimum 316 grade stainless steel sealed against positive flue pressure. The Rheem supplied flue components meet this requirement and are easily fitted together with gaskets and over-centre clamp rings.

The flue must be installed with fall toward the heater where condensate can be collected. The condensate drain section must be connected and drained to the sewer waste or outside. A condensate trap must be installed and filled with water to prevent spillage of products of combustion.

HOW TO SIZE

The overall dimension of each flue piece is shown in the drawings. Allow approximately 35mm for insertion of each flue piece.

Determine the lineal distance and number of 45° and/or 90° elbow between the top of the water heater and flue terminal in accordance with the table. Note, the bottom edge of a vertical flue terminal must be 500mm away from the nearest structure in accordance with AS/NZS 5601.1.

Flashing is required to be installed where a vertical flue section penetrates the roof line (not supplied).

Flue penetrations through walls and ceilings must be sealed in accordance with local fire regulations.

FLUE SIZING									
MVB	Eluo Matorial	Flue Size	Max Flue Length⁴	Combustion Air Intake	Max Air Inlet Length⁴ (m)				
Model	i luc material	(mm)	(m)	Pipe Material	Ø 150mm	Ø 200mm	Ø 250mm		
910500	316L Stainless Steel	150	23	Stainless Steel, Galvanized Steel, PVC, ABS, CPVC	14	30	N/A		
910750									
911000	minimum								
911250		200	23	Stainless Steel, Galvanized Steel, PVC, ABS, CPVC	N/A	14	26		
911500	316L Stainless Steel minimum								
911750									
912000									

⁴ Subtract 3m for every elbow. Max 4 x elbows. Flue terminal not considered as part of the overall length of the flue system.

Room Sealed Vertical Flueing

Room Sourced Vertical Flueing

Room Sealed Horizontal Through-the-Wall Flueing

Room Sourced Horizontal Through-the-Wall Flueing

Outdoor Flueing

Alternative Outdoor Through-the-Wall Flueing

FLUEING AND ACCESSORIES

The MVB is supported by a range of stainless steel flue components suitable for positive pressure condensing operation. Ø150mm suits 910500, 910750 and 911000. Ø200mm suits 911250, 911500, 911750 and 912000. The following parts are available:

04

PIPE SIZE AND PUMP SELECTION

	Pump Model		Minimum Manifold Header Size (mm) / Pump Speed Setting									
MVB Model		Branch Size	1 Unit		2 Units		3 Units		4 Units			
Model			Pipe Dia. (mm)	Speed	Pipe Dia. (mm)	Speed	Pipe Dia. (mm)	Speed	Pipe Dia. (mm)	Speed		
910500	UPS32-80N	50	50	3	65	3	80	3	100	3		
910750	UPS32-80N	65	65	3	80	3	100	3	100	3		
911000	Magna 1 40-120	65	65	PP1	100	PP1	100	CP1	125	PP1		
911250	Magna 1 40-120	80	80	CC2	100	CC2	125	CC2	125	CC3		
911500	Magna 1 40-120	80	80	CC3	100	CC3	125	CC3	150	CC3		
911750	Magna 1 65-150	100	100	CC2	125	CC2	150	CC2	200	CC2		
912000	Magna 1 65-150	100	100	PP2	125	PP2	150	PP2	200	PP2		

NOTE: Manifold header sizes are minimum requirements for water heater performance. Header sizing is based on a total length of 20m of primary flow and return piping and 20 bends, excluding equa-flow manifolds on storage tanks and MVBs, at 1.2m/sec velocity in copper pipe.

MVB PIPE SIZE AND PUMP SELECTION CHART FOR DOMESTIC HOT WATER AND HYDRONIC APPLICATIONS BETWEEN 65°C AND 82°C (15 DEGREE RISE) Minimum Manifold Header Size (mm) / Pump Speed Setting MVB Model Branch Size Pump Model (mm) Pipe Dia. Pipe Dia. Pipe Dia. Pipe Dia. Speed Speed Speed Speed (mm) (mm) (mm) (mm) 910500 UPS32-80N 50 50 3 80 3 100 3 100 3 910750 PP1 Magna 1 40-120 65 65 PP1 100 100 PP1 125 PP1 911000 Magna 1 40-120 80 80 PP1 100 CC2 125 PP1 150 PP1 911250 Magna 1 40-120 80 80 CC3 125 CC3 125 CC3 150 CC3 911500 Magna 1 65-150 100 100 125 PP2 150 PP2 CC2 CC2 200 911750 Magna 1 65-150 100 100 CC3 125 CC3 150 CC3 200 CP3 912000 Magna 1 65-150 100 100 CC3 125 CC3 150 CC3 200 CC3

NOTE: Manifold header sizes are minimum requirements for water heater performance. Header sizing is based on a total length of 20m of primary flow and return piping and 20 bends, excluding equa-flow manifolds on storage tanks and MVBs, at 1.2m/sec velocity in copper pipe.

Water Supply and Relief Valve Settings

OPERATION TYPE	W Models (DHW)	H Models ⁷ (HHW)		
Relief Valve Setting (kPa)	1000 (850) ⁵	415		
Expansion Control Valve (ECV) ⁶ Setting (kPa)	850 (700) ⁵	N/A		
Minimum Water Supply Pressure				
System water temperatures up to 65°C (kPa)	70 (7m)	70 (7m)		
System water temperatures above 65°C (kPa)	120 (12m)	120 (12m)		
Maximum Supply Pressure				
without ECV ⁶ fitted (kPa)	800 (680) ¹	330		
with ECV ⁶ fitted (kPa)	680 (550) ¹	N/A		

⁵ Figures in brackets are to be used if an RT stainless steel storage tank is utilised in the system.

Expansion control valve is not supplied with the water heater.
 H models used for high temperature DHW applications follow pressure limitations of W models.

*Conditions apply: For full terms and conditions please contact Rheem or see Owner's Guide and Installation Instructions, available at www.rheem.com.au

INSTALL A

66